Clustering
Clustering is the assignment of objects into groups (called clusters) so that objects from the same cluster are more similar to each other than objects from different clusters. Often similarity is assessed according to a distance measure. Clustering is a common technique for statistical data analysis, which is used in many fields, including machine learning, data mining, pattern recognition, image analysis and bioinformatics.
Types of clustering
Data clustering algorithms can be hierarchical. Hierarchical algorithms find successive clusters using previously established clusters. Hierarchical algorithms can be agglomerative ("bottom-up") or divisive ("top-down"). Agglomerative algorithms begin with each element as a separate cluster and merge them into successively larger clusters. Divisive algorithms begin with the whole set and proceed to divide it into successively smaller clusters.
Partitional algorithms typically determine all clusters at once, but can also be used as divisive algorithms in the hierarchical clustering.Density-based clustering algorithms are devised to discover arbitrary-shaped clusters. In this approach, a cluster is regarded as a region in which the density of data objects exceeds a threshold. DBSCAN and OPTICS are two typical algorithms of this kind. Two-way clustering, co-clustering or biclustering are clustering methods where not only the objects are clustered but also the features of the objects, i.e., if the data is represented in a data matrix, the rows and columns are clustered simultaneously.
Another important distinction is whether the clustering uses symmetric or asymmetric distances. A property of Euclidean space is that distances are symmetric (the distance from object A to B is the same as the distance from B to A). In other applications (e.g., sequence-alignment methods, see Prinzie & Van den Poel (2006)), this is not the case.
Distance measure
An important step in any clustering is to select a distance measure, which will determine how the similarity of two elements is calculated. This will influence the shape of the clusters, as some elements may be close to one another according to one distance and farther away according to another. For example, in a 2-dimensional space, the distance between the point (x=1, y=0) and the origin (x=0, y=0) is always 1 according to the usual norms, but the distance between the point (x=1, y=1) and the origin can be 2, or 1 if you take respectively the 1-norm, 2-norm or infinity-norm distance.
Common distance functions:
- The Euclidean distance (also called distance as the crow flies or 2-norm distance). A review of cluster analysis in health psychology research found that the most common distance measure in published studies in that research area is the Euclidean distance or the squared Euclidean distance.
- The Manhattan distance (also called taxicab norm or 1-norm)
- The maximum norm
- The Mahalanobis distance corrects data for different scales and correlations in the variables
- The angle between two vectors can be used as a distance measure when clustering high dimensional data. See Inner product space.
- The Hamming distance (sometimes edit distance) measures the minimum number of substitutions required to change one member into another
Tidak ada komentar:
Posting Komentar