Cluster Analysis :
Clustering is the assignment of objects into groups (called clusters) so that objects from the same cluster are more similar to each other than objects from different clusters. Often similarity is assessed according to a distance measure. Clustering is a common technique for statistical data analysis, which is used in many fields, including machine learning, data mining, pattern recognition, image analysis and bioinformatics.
Data clustering algorithms can be hierarchical. Hierarchical algorithms find successive clusters using previously established clusters. Hierarchical algorithms can be agglomerative ("bottom-up") or divisive ("top-down"). Agglomerative algorithms begin with each element as a separate cluster and merge them into successively larger clusters. Divisive algorithms begin with the whole set and proceed to divide it into successively smaller clusters.
Hierarchical clustering builds (agglomerative), or breaks up (divisive), a hierarchy of clusters. The traditional representation of this hierarchy is a tree (called a dendrogram), with individual elements at one end and a single cluster containing every element at the other. Agglomerative algorithms begin at the leaves of the tree, whereas divisive algorithms begin at the root. (In the figure, the arrows indicate an agglomerative clustering.)
Cutting the tree at a given height will give a clustering at a selected precision. In the following example, cutting after the second row will yield clusters {a} {b c} {d e} {f}. Cutting after the third row will yield clusters {a} {b c} {d e f}, which is a coarser clustering, with a smaller number of larger clusters.
applications
Social network analysis
In the study of social networks, clustering may be used to recognize communities within large groups of people.
Image segmentation
Clustering can be used to divide a digital image into distinct regions for border detection or object recognition.
Data mining
Many data mining applications involve partitioning data items into related subsets; the marketing applications discussed above represent some examples. Another common application is the division of documents, such as World Wide Web pages, into genres.
Decision Analysis:
Decision Analysis (DA) is the discipline comprising the philosophy, theory, methodology, and professional practice necessary to address important decisions in a formal manner. Decision analysis includes many procedures, methods, and tools for identifying, clearly representing, and formally assessing the important aspects of a decision situation, for prescribing the recommended course of action by applying the maximum expected utility action axiom to a well-formed representation of the decision, and for translating the formal representation of a decision and its corresponding recommendation into insight for the decision maker and other stakeholders.
The decision analysis (DA) cycle is the top-level procedure for carrying out a decision analysis. The traditional cycle consists of four phases:
* basis development
* determinisitic sensitivity analysis
* probabilistic analysis
* basis appraisal.
A revised form of the cycle consists of an attention-focusing method followed by a decision method, each of which is composed of three stages:
* formulation
* evaluation
* appraisal.
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar