ANALISIS INTERPENDENSI DALAM PERENCANAAN
Analisis Interdependensi
Pada bagian analisis interdependensi ini, terdapat tiga teknik analisis yang meliputi analisis faktor, analisis kluster, dan multidimensional scaling.
1. Analisis Faktor
Yang dimaksud dengan analisis faktor ialah suatu teknik analisis yang digunakan untuk memahami yang mendasari dimensi-dimensi atau regularitas suatu gejala. Tujuan utama teknik ini ialah untuk membuat ringkasan informasi yang dikandung dalam sejumlah besar variable kedalam suatu kelompok faktor yang lebih kecil. Secara statistik tujuan pokok teknik ini ialah untuk menentukan kombinasi linear variable-variabel yang akan membantu dalam penyeledikan saling keterkaitannya variable-variabel tersebut. Atau dengan kata lain digunakan untuk mengidentifikasi variabel-variabel atau faktor-faktor yang menerangkan pola hubungan dalam seperangkat variabel. Teknik ini bermanfaat untuk mengurangi jumlah data dalam rangka untuk mengidentifikasi sebagian kecil faktor yang dapat menerangkan varians yang sedang diteliti secara lebih jelas dalam suatu kelompok variabel yang jumlahnya lebih besar. Kegunaan utama analisis faktor ialah untuk melakukan pengurangan data atau dengan kata lain melakukan peringkasan sejumlah variabel menjadi lebih kecil jumlahnya. Pengurangan dilakukan dengan melihat interdependensi beberapa variabel yang dapat dijadikan satu yang disebut dengan faktor sehingga diketemukan variabel-variabel atau faktor-faktor yang dominan atau penting untuk dianalisa lebih lanjut.
Prosedur analisis faktor juga dapat digunakan untuk membuat hipotesis yang mempertimbangkan mekanisme sebab akibat atau menyaring sejumlah variabel untuk kemudian dilakukan analisis selanjutnya, misalnya mengidentifikasi kolinearitas sebelum melakukan analisis regresi linear.
Dalam prosedur analisis faktor, terdapat tingkatan fleksibilitas tinggi, diantaranya ialah:
• Tujuh metode untuk membuat ekstrasi faktor.
• Lima metode rotasi, diantaranya ialah direct oblimin dan promax untuk rotasi non orthogonal.
• Tiga metode untuk menghitung nilai-nilai faktor dan kemudian faktor-faktor tersebut dapat disimpan ke dalam file untuk dianalisis lebih lanjut.
Sebagai contoh dalam suatu penelitian, kita ingin mengetahui sikap-sikap apa saja yang mendasari orang mau memberikan jawaban terhadap pertanyaan-pertanyaan dalam suatu survei politik? Dari hasil penelitian didapatkan adanya tumpang tindih yang signifikan antara berbagai sub-kelompok butir-butir pertanyaan, misalnya pertanyaan-pertanyaan mengenai masalah perpajakan cenderung untuk berkorelasi satu dengan lainnya, masalah militer saling berkorelasi, masalah ekonomi juga demikian. Jika terjadi demikian, maka kita sebaiknya menyelesaikan persoalan tersebut dengan menggunakan analisis faktor. Dengan teknik ini kita dapat melakukan penyelidikan sejumlah faktor yang mendasarinya dan dapat mengidentifikasi faktor-faktor apa saja yang mewakilinya secara konseptual. Tidak hanya itu, kita juga dapat menghitung nilai-nilai untuk masing-masing responden dan kemudian dipergunakan untuk analisis selanjutnya. Sebagai contoh kita dapat membuat model regresi logistik untuk memprediksi perilaku pemberian suara didasarkan pada nilai-nilai faktor.
Untuk menggunakan teknik ini persyaratan yang sebaiknya dipenuhi ialah:
• Data yang digunakan ialah data kuantitatif berskala interval atau ratio.
• Data harus mempunyai distribusi normal bivariate untuk masing-masing pasangan variable
• Model ini mengkhususkan bahwa semua variabel ditentukan oleh faktor-faktor biasa (faktor-faktor yang diestimasikan oleh model) dan faktor-faktor unik (yang tidak tumpang tindih antara variabel-varaibel yang sedang diobservasi)
• Estimasi yang dihitung didasarkan pada asumsi bahwa semua faktor unik are tidak saling berkorelasi satu dengan lainnya dan dengan faktor-faktor biasa.
• Persyaratan dasar untuk melakukan penggabungan ialah besarnya korelasi antar variabel independen setidak-tidaknya 0,5 karena prinsip analisis faktor ialah adanya korelasi antar variabel.
2 Analisis Kluster
Analisis kluster merupakan suatu teknik analisis statistik yang ditujukan untuk membuat klasifikasi individu-individu atau obyek-obyek kedalam kelompok-kelompok lebih kecil yang berbeda satu dengan yang lain. Prosedur analisis kluster ini digunakan untuk mengidentifikasi kelompok kasus yang secara relatif sama yang didasarkan pada karakteristik-karakteristik yang sudah dipilih dengan menggunakan algoritma yang dapat mengatur kasus dalam jumlah besar. Algoritma yang digunakan mengharuskan kita membuat spesifikasi jumlah kluster-kluster yang akan dibuat. Metode yang digunakan untuk membuat klasifikasi dapat dipilih satu dari dua metode, yaitu memperbaharui kelompok-kelompok kluster secara iteratif atau hanya melakukan klasifikasi. Dalam analisa kluster tidak ada variabelbebas dan tergantung karena model analisa ini merupakan model independent. Kegunaan utama ialah untuk mengelompokkan obyek-obyek berdasarkan karakteristik tertentu yang sama. Obyek dapat berupa benda , misalnya produk ataupun orang yang biasa disebut responden. Kluster sebaiknya mempunyai kesamaan yang tinggi dalam kelompok kluster tersebut tetapi mempunyai perbedaan yang besar antar kelompok kluster
Contoh kasus: Kita ingin mengidentifikasi kelompok-kelompok pertunjukkan televisi yang menarik pemirsa yang mirip di setiap kelompok masing-masing. Dengan menggunakan analisis k-means cluster, kita dapat membuat kluster-kluster beberapa pertunjukkan televisi kedalam kelompok yang sama didasarkan pada karakteristik para pemirsa pertunjukkan tersebut. Kegunaan utama hal ini ialah untuk mengidentifikasi segmen-segmen untuk pemasaran yang akan bermanfaat untuk strategi pemasaran.
Untuk menggunakan teknik ini persyaratan yang harus dipenuhi, diantaranya ialah:
• Data yang digunakan untuk analisis ini ialah data kuantitatif berskala interval atau rasio.
• Metode yang ada ialah hubungan antara kelompok (between-groups linkage), hubungan dalam kelompok (within-groups linkage), kelompok terdekat (nearest neighbor), kelompok berikutnya (furthest neighbor), kluster centroid (centroid clustering), kluster median (median clustering), dan metode Ward's.
3 Multidimensional Scaling
Multidimensional scaling merupakan suatu teknik statistik yang mengukur obyek-obyek dalam ruangan multidimensional didasarkan pada penilaian responden mengenai kemiripan (similarity) obyek-obyek tersebut. Perbedaan persepsi diantara semua obyek direfleksikan didalam jarak relative diantara obyek-obyek tersebut didalam suatu ruangan multidimensional. Contoh kasus misalnya seorang responden diminta menilai kemiripan karakteristik antara mobil Honda dengan mobil Suzuki. Kemiripan ini dilihat didasarkan pada komponen-komponen sikap. Terbukanya komponen-komponen sikap tersebut akan membantu menerangkan mengapa obyek-obyek tersebut, dalam hal ini Mobil Honda dan Suzuki dinilai mempunyai kemiripan atau perbedaan diantaranya keduanya.
Multidimensional scaling dapat juga diaplikasikan kedalam rating subyektif dalam perbedaan (dissimilarity) antara obyek atau konsep. Lebih lanjut teknik ini dapat mengolah data yang berbeda dari berbagai sumber yang berasal dari responden. Sebagai contoh bagaimana orang diminta untuk melihat hubungan antara mobil yang berbeda. Jika seorang peneliti mempunyai data yang berasal dari responden yang menunjukkan penilaian kesamaan antara pembuatan yang berbeda dan model mobil, maka teknik multidimensional scaling dapat digunakan untuk mengidentifikasi dimensi-dimensi yang menggambarkan persepsi konsumen. Peneliti dapat menemukan, misalnya bahwa harga dan ukuran kendaraan mendefinisikan dua ruangan dimensional yang mempertimbangkan kesamaan-kesamaan yang dilaporkan oleh para responden.
Untuk menggunakan teknik analisis ini persyaratan yang harus dipenuhi diantaranya ialah:
• Data dapat menggunakan berbagai skala pengukuran, misalnya interval, rasio, ordinal dan nominal. Semua itu tergantung pada teknik yang dipergunakan.
• Jika data dalam bentuk keterbedaan, maka data tersebut harus kuantitatif dan diukur dengan skala pengukuran metrik yang sama, misalnya skala pengukuran interval. Jika data merupakan data multivariat, maka variable-variabel dapat berupa kuantitatif, biner atau data hitungan. Jika data mempunyai perbedaan dalam skala, misalnya ada rupiah, tahun, meter, dstnya; maka data tersebut harus di standarisasi terlebih dahulu dengan menggunakan prosedur yang sudah ada di dalam teknik ini.
• Asumsi menggunakan teknik multidimensional scaling procedure relative bebas dari asumsi distribusional. Sekalipun demikian kita harus memilih skala pengukuran yang tepat, misalnya ordinal, interval, atau ratio dalam SPSS pilihan ini ada di perintah Options.
• Jika file data mewakili jarak antara seperangkat obyek atau jarak antara dua perangkat obyek, maka kita harus melakukan spesifikasi bentuk matriks data untuk memperoleh hasil yang benar. Pilihlah alternative sebagai berikut: Square symmetric, Square asymmetric, atau Rectangular.
• Multidimensional scaling menggunakan data yang berbeda untuk membuat solusi penggunaan skala. Jika data merupakan data multivariat, maka kita harus menciptakan data yang berbeda untuk menghitung solusi multidimensional scaling. Kita dapat membuat spesifikasi detil-detil data tersebut dengan cara menciptakan pengukuran keterbedaan dari data yang kita miliki.
• Pengukuran akan memungkinkan kita membuat spesifikasi pengukuran keterbedaan dalam analisis yang kita lakukan. Caranya ialah dengan memilih satu alternatif dari Measure group yang berhubungan dengan tipe data yang dipunyai, dan kemudian pilih salah satu pengukuran dari daftar yang ada yang berhubungan dengan tipe pengukuran yang ada dalam SPSS, diantaranya:
• Interval. Euclidean distance, squared Euclidean distance, Chebychev, Block, Minkowski, atau Customized.
• Count. Chi-square measure atau Phi-square measure.
• Binary. Euclidean distance, Squared Euclidean distance, Size difference, Pattern difference, Variance, atau Lance dan Williams
• Pengukuran keterbedaan untuk data interval digunakan:
• Euclidean distance. Akar kuadrat jumlah perbedaan yang dikuadratkan antara nilai-nilai semua item.
• Squared Euclidean distance. Jumlah perbedaan yang dikuadratkan antara semua nilai bagi item-item tersebut.
• Chebychev. Perbedaan absolut maksimum nilai-nilai untuk semua item.
• Block. Jumlah perbedaan absolut antara nilai-nilai item; yang juga disebut sebagai Manhattan distance.
• Minkowski. Akar ke p dari jumlah perbedaan absolut ke to p power antara nilai-nilai semua item.
• Customized. Akar ke r dari jumlah perbedaan absolut ke p power antara nilai-nilai untuk semua item
• Pengukuran keterbedaan untuk data count digunakan:
• Chi-square measure. Didasarkan pada uji chi-square untuk kesejajaran (equality) untuk dua perangkat frekuensi..
• Phi-square measure. Pengukuran ini sejajar dengan chi-square measure yang normalisasikan dengan akar kuadrat dari frekuensi yang dikombinasikan.
• Pengukuran keterbedaan untuk data biner digunakan:
• Euclidean distance. Dihitung dari table lipat empat sebagai SQRT(b+c), dimana b dan c mewakili sel-sel diagonal yang berhubungan dengan kasus-kasus yang hadir dalam satu item tetapi absen di item-item lain.
• Squared Euclidean distance. Dihitung sebagai jumlah kasus-kasus yang sejajar. Nilai minimum sebesar 0, dan tidak mempunyai batas atas..
• Size difference. Indeks asimetris yang mempunyai jangkauan dari 0 ke 1.
• Pattern difference. Pengukuran keterbedaan untuk data biner yang berkisart dari 0 ke 1. Dihitung dari table lipat empat sebagai bc/(n**2), dimana b dan c mewakili sel-sel diagonal yang berhubungan dengan kasus-kasus yang hadir satu item tetapi absen di item-item lain dan n merupakan jumlah observasi total.
• Variance. Dihitung dari table lipat empat sebagai (b+c)/4n, dimana b dan c mewakili sel-sel diagonal yang berhubungan dengan kasus-kasus yang hadir satu item tetapi absen di item-item lain dan n merupakan jumlah observasi total dengan kisaran nilai dari 0 ke 1.
• Lance and Williams. Dihitung dari table lipat empat sebagai (b+c)/(2a+b+c), dimana a mewakili sel yang berhubungan dengan dengan kasus-kasus yang hadir dalam kedua item, dan b serta c mewakili sel-sel diagonal yang berhubungan dengan kasus-kasus yang hadir satu item tetapi absen di item-item lain. Pengukuran ini berkisar dari 0 ke 1. Pengukuran ini dikenal juga sebagai Bray-Curtis nonmetric coefficient.
• Pengukuran nilai-nilai yang ditransformasi digunakan:
• Z scores. Semua nilai distandarisasi kedalam nilai Z, dengan rata-rata sebesar 0 dan simpangan baku sebesar 1.
• Range -1 to 1. Masing-masing nilai untuk item tertentu yang sedang distandarisasi dibagi dengan jarak semua nilai.
• Range 0 to 1. Prosedur ini mengurangi nilai minimum dari masing-masing dari masing-masing item yang sedang distandarisasi kemudian dibagi dengan jarak.
• Maximum magnitude of 1. Prosedur untuk membagi masing-masing nilai untuk item tertentu yang sedang distandarisasi dengan jumlah maksimum semua nilai.
• Mean of 1. Prosedur untuk membagi masing-masing nilai untuk item tertentu yang sedang distandarisasi dengan rata-rata semua nilai.
• Standard deviation of 1. Prosedur untuk membagi masing-masing nilai untuk variable atau kasus tertentu yang sedang distandarisasi dengan simpanganbaku semua nilai.
• Model Multidimensional Scaling
Estimasi yang tepat dalam suatu model multidimensional scaling tergantung pada aspek-aspek data dan model itu sendiri. Di bawah ini akan dibahas mengenai tingkat pengukuran, persyaratan, dimensi dan model scaling.
• Tingkat Pengukuran (Level of Measurement). Memungkinkan kita untuk membuat spesifikasi tingkat data, yang dapat berupa data ordinal, interval, atau rasio. Jika variable-variabel berupa ordinal, pilih Untie observasi-observasi terikat “tied” dengan meminta semua variable tersebut diperlakukan sebagai variable-variabel continuous, sehingga pengikat (tie) untuk semua nilai yang sama bagi kasus-kasus yang berbeda dapat diselesaikan secara optimal.
• Persyaratan (Conditionality). Memungkinkan kita untuk membuat spesifikasi perbandingan-perbandingan mana yang bermakna. Pilihannya ialah Matrix, Row, atau Unconditional.
• Dimensi (Dimensions). Memungkinkan kita membuat spesifikasi dimensionalitas dalam penyelesaian scaling. Salah satu penyelesaiannya ialah dengan menghitung masing-masing angka dalam kisaran tertentu.. Spesifikasi integer-integer antara 1 dan 6; minimal 1 diijinkan hanya jika kita memilih Euclidean distance sebagai model scaling. Untuk penyelesaian tunggal, spesifikasi angka yang sama dalam bentuk minimal dand maximal.
• Model Pembuatan Skala (Scaling Model). Memungkinkan kita melakukan spesifikasi asumsi-asumsi dimana scaling dilakukan. Pilihan yang tersedia ialah Euclidean distance atau Individual differences Euclidean distance (disebut juga sebagai INDSCAL). Untuk model Individual differences Euclidean distance, kita dapat memilih perintah Allow negative subject weights, jika sesuai dengan data yang ada.
• Opsi-Opsi dalam Multidimensional Scaling
Kita dapat membuat spesifikasi opsi-opsi dalam analisis multidimensional scaling, diantaranya:
• Display. Memungkinkan kita memilih berbagai tipe keluaran, misalnya. Group plots, Individual subject plots, Data matrix, serta Model dan options summary.
• Criteria. Memungkinkan kita menentukan kapan iterasi harus berhenti. Untuk mengubah default, masukkan nilai-nilai untuk S-stress convergence, Minimum S-stress value, dan Maximum iterations.
• Treat distances less than n as missing. Jarak (distance) kurang dari nilai yang dikeluarkan dari analisis.
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar